Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 143: 109212, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926203

RESUMO

The present study aimed to reveal the role of inositol-requiring enzyme 1α (Ire1α) in mediating high-fat-diet (HFD) induced inflammation and apoptosis in fish and elucidate underling mechanisms of action. In experiment 1, black seabream juveniles were fed a control diet (Control, 12 % dietary lipid) or a high fat diet (HFD, 19 % dietary lipid) for eight weeks. In experiment 2, primary hepatocytes were isolated from black seabream juveniles and treated with oleic acid (OA, 200 µmol/L), OA + transfection with non-silencing control siRNA (negative control) (OA + NC), and OA + transfection with ire1α-small interfering RNA (OA + siire1α) for 48 h versus untreated (Control). Results indicated that fish fed HFD increased lipid deposition in the liver and caused hepatic steatosis. HFD group had significantly higher ire1α/Ire1α mRNA and phosphorylated protein expression and endoplasmic reticulum stress (ERS) related genes expression compared to the Control group, indicating that ERS was triggered. Meanwhile, feeding HFD induced inflammation and apoptosis by evaluated nuclear factor kappa B (nf-κb) mRNA and phosphorylated Nf-κb p65 protein expression, and c-Jun N-terminal kinase (jnk) mRNA and protein expression. However, knock down of ire1α (OA + siire1α) in primary hepatocytes alleviated OA-induced increased expression of ire1α/Ire1α mRNA and protein expression, nf-κb/Nf-κb p65 mRNA and phosphorylated protein expression, and jnk/Jnk mRNA and phosphorylated protein expression. These findings revealed the underling mechanism of action of HFD in fish, confirming that HFD increased ESR stress and Ire1α that, in turn, activated Nf-κb and Jnk pathways in hepatocytes and liver mediating HFD-induced inflammation and apoptosis.


Assuntos
Dourada , Animais , Dourada/metabolismo , NF-kappa B/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/veterinária , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inositol , Proteínas Serina-Treonina Quinases/genética , Fígado/metabolismo , Hepatócitos/metabolismo , Apoptose , Inflamação/veterinária , Inflamação/metabolismo , Gorduras na Dieta/metabolismo , RNA Mensageiro/metabolismo , Estresse do Retículo Endoplasmático
2.
Fish Physiol Biochem ; 49(6): 1115-1128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37855969

RESUMO

Glucose-regulated protein 78 (grp78) and activating transcription factor 6α (atf6α) are considered vital endoplasmic reticulum (ER) molecular chaperones and ER stress (ERS) sensors, respectively. In the present study, the full cDNA sequences of these two ERS-related genes were first cloned and characterized from black seabream (Acanthopagrus schlegelii). The grp78 cDNA sequence is 2606 base pair (bp) encoding a protein of 654 amino acids (aa). The atf6α cDNA sequence is 2168 base pair (bp) encoding a protein of 645 aa. The predicted aa sequences of A. schlegelii grp78 and atf6α indicated that the proteins contain all the structural features, which were characteristic of the two genes in other species. Tissues transcript abundance analysis revealed that the mRNAs of grp78 and atf6α were expressed in all measured tissues, but the highest expression of these two genes was all recorded in the gill followed by liver/ brain. Moreover, in vivo experiment found that fish intake of a high lipid diet (HLD) can trigger ERS by activating grp78/Grp78 and atf6α/Atf6α. However, it can be alleviated by dietary betaine supplementation, similar results were also obtained by in vitro experiment using primary hepatocytes of A. schlegelii. These findings will be beneficial for us to evaluate the regulator effects of HLD supplemented with betaine on ERS at the molecular level, and thus provide some novel insights into the functions of betaine in marine fish fed with an HLD.


Assuntos
Perciformes , Dourada , Animais , Chaperona BiP do Retículo Endoplasmático , Dourada/genética , Betaína , DNA Complementar/genética , Perciformes/genética , Estresse do Retículo Endoplasmático , Fatores Ativadores da Transcrição/genética , Clonagem Molecular
3.
Anim Nutr ; 15: 58-70, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37818178

RESUMO

An 8-week feeding trial was conducted in Pacific white shrimp (Litopenaeus vannamei) to evaluate the effects of dietary choline supplementation on choline transport and metabolism, hepatopancreas histological structure and fatty acid profile, and regulation of lipid metabolism. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels of 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g/kg, respectively. A total of 960 shrimp (initial weight, 1.38 ± 0.01 g) were distributed randomly into twenty-four 250-L cylindrical fiber-glass tanks, with each diet assigned randomly to 4 replicate tanks. The results indicated that dietary choline significantly promoted the deposition of choline, betaine and carnitine (P < 0.05). The diameters and areas of R cells, total lipid and triglyceride contents in hepatopancreas, and triglyceride and non-esterified fatty acid contents in hemolymph were negatively correlated with dietary choline level. The contents of functional fatty acids in hepatopancreas, the activity of acetyl-CoA carboxylase (Acc), and the mRNA expression of fas, srebp and acc were highest in shrimp fed the diet containing 4.67 g/kg choline, and significantly higher than those fed the diet containing 2.91 g/kg, the lowest level of choline (P < 0.05). The number of R cells, content of very low-density lipoprotein (VLDL), activities of carnitine palmitoyl-transferase (Cpt1), lipoprotein lipase and hepatic lipase, and the mRNA expression levels of cpt1, fabp, fatp, ldlr, and ampk in hepatopancreas increased significantly as dietary choline increased (P < 0.05). In addition, hepatopancreas mRNA expression levels of ctl1, ctl2, oct1, badh, bhmt, ck, cept, and cct were generally up-regulated as dietary choline level increased (P < 0.01). In conclusion, dietary choline promoted the deposition of choline and its metabolites by up-regulating genes related to choline transport and metabolism. Moreover, appropriate dietary choline level promoted the development of hepatopancreas R cells and maintained the normal accumulation of lipids required for development, while high dietary choline not only promoted hepatopancreas lipid export by enhancing VLDL synthesis, but also promoted fatty acid ß-oxidation and inhibited de novo fatty acid synthesis by activating the Ampk/Srebp signaling pathway. These findings provided further insight and understanding of the mechanisms by which dietary choline regulated lipid metabolism in L. vannamei.

4.
Fish Shellfish Immunol ; 140: 108943, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451523

RESUMO

Cryptocaryon irritans is a ciliated obligate parasite that causes cryptocaryonosis (white spot disease) and poses great threat to marine fish farming. In recent years, the use of probiotics protects fish from pathogens, which has been identified as the sustainable and environmentally friendly tool to maintain the health and well-being of the host. Accordingly, Cryptocaryon irritans tomont and probiotic Bacillus strain (B.licheniformis, previously isolated from aquaculture water) were co-cultured to detect whether B. licheniformis has anti-C. irritants effect. The result showed that during 4-day incubation, B. licheniformi with 1 × 107 CFU/mL and 1 × 108 CFU/mL concentration effectively inhibited the incubation of C. irritans tomont, indicating that B. licheniformi could inhibit the transformation from reproductive tomont to infective theront of C. irritans. Later, C. irritans samples in the control (without B. licheniformi supplementation) and 1 × 107 CFU/mL B. licheniformi treatment group were sent for transcriptome analysis. Compare with the control group, a total of 3237 differentially expressed genes were identified, among which 626 genes were up-regulated and 2611 genes were down-regulated in 1 × 107 CFU/mL B. licheniformi group. Further Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that anti-C. irritans mechanism of B. licheniformi was mainly involved in the energy metabolism (carbon metabolism, oxidative phosphorylation, biosynthesis of amino acids), transcription and translation (Ribosomes, spliceosomes, RNA transport, etc), lysosome-based degradation (lysosome, phagosome, protein processing in endoplasmic reticulum) and PI3K-Akt pathways. Our study findings raised the possibility of using marine microorganism B. licheniformi in handling aquaculture associated pathogen C. irritans, and preliminarily clarified the molecular mechanism.


Assuntos
Bacillus licheniformis , Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Infecções por Cilióforos/parasitologia , Bacillus licheniformis/genética , Fosfatidilinositol 3-Quinases/genética , Doenças dos Peixes/genética , Perfilação da Expressão Gênica/veterinária , Perciformes/genética , Transcriptoma
5.
Anim Nutr ; 12: 297-307, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37013080

RESUMO

The physiological processes involved in adaptation to osmotic pressure in euryhaline crustaceans are highly energy demanding, but the effects of dietary lipids (fat) on low salinity adaptations have not been well evaluated. In the present study, a total of 120 mud crabs (Scylla paramamosain, BW = 17.87 ± 1.49 g) were fed control and high-fat (HF) diets, at both medium salinity (23‰) and low salinity (4‰) for 6 wk, and each treatment had 3 replicates with each replicate containing 10 crabs. The results indicated that a HF diet significantly mitigated the reduction in survival rate, percent weight gain and feed efficiency induced by low salinity (P < 0.05). Low salinity lowered lipogenesis and activated lipolysis resulting in lipid depletion in the hepatopancreas of mud crabs (P < 0.05). Thus, HF diets enhanced the process of lipolysis to supply more energy. In the gills, low salinity and the HF diet increased the levels of mitochondrial biogenesis markers, the activity of mitochondrial complexes, and the expression levels of genes related to energy metabolism (P < 0.05). Consequently, the positive effects of the HF diet on energy metabolism in mud crabs at low salinity promoted osmotic pressure regulation. Specifically, significantly higher haemolymph osmotic pressure and inorganic ion content, as well as higher osmotic pressure regulatory enzyme activity in gills, and gene and protein expression levels of NaK-ATPase were observed in crabs fed the HF diet at low salinity (P < 0.05). In summary, high dietary lipid levels improved energy provision to facilitate mitochondrial biogenesis, which increased ATP provision for osmotic pressure regulation of mud crabs. This study also illustrates the importance of dietary lipid nutrition supplementation for low salinity adaptations in mud crabs.

6.
Cell Mol Immunol ; 20(4): 389-403, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788341

RESUMO

Helminth-induced Th2 immunity and gut microbiota have been recently shown to be highly effective in modulating metabolic syndromes in animal models. This study aimed to determine whether maternal immunity and microbial factors affect the induction and development of obesity in offspring. Here, Heligomosomoides polygyrus (Hp)-infected or control female C57BL/6J mice mated with normal males and their offspring were fed a high-fat diet (HFD) for 9 weeks after weaning. Our results showed that Hp-induced maternal outcomes during gestation and lactation significantly impacted offspring metabolic phenotypes. This was evidenced by results showing that offspring from helminth-infected mothers on an HFD (Hp-offspring + HFD) gained significantly less body weight than those from uninfected mothers (Cont-offspring + HFD). Hp-offspring + HFD exhibited no Th2 phenotype but displayed a pattern of gut microbiota composition similar to that of Hp-infected mothers. Cross-fostering experiments confirmed that the helminth-induced maternal attenuation of offspring obesity was mediated through both prenatal and postnatal effects. Our results further showed that helminth-infected dams and their offspring had a markedly altered gut microbiome composition, with increased production of short-chain fatty acids (SCFAs). Intriguingly, Hp-infected mothers and Hp-offspring + HFD showed increased SCFA receptor (GPR) expression in adipose and colonic tissues compared to noninfected mothers and Cont-offspring + HFD, respectively. Moreover, SCFA supplementation to the pups of uninfected control mothers during lactation protected against HFD-induced weight gain, which corresponded with changes in gut bacterial colonization. Collectively, our findings provide new insights into the complex interaction of maternal immune status and gut microbiome, Hp infection, and the immunity and gut microbiome in obese-prone offspring in infant life.


Assuntos
Helmintíase , Helmintos , Microbiota , Animais , Gravidez , Camundongos , Masculino , Feminino , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade , Ácidos Graxos Voláteis
7.
Fish Shellfish Immunol ; 131: 827-837, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334698

RESUMO

The objective of the present study was to evaluate the effects of dietary choline levels on growth performance, antioxidant capacity, innate immunity and hemocyte apoptosis of Litopenaeus vannamei. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels: 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g kg-1choline, respectively. The results indicated that shrimp fed diet with 4.67 g kg-1 choline had the highest final body weight (FBW), percent weight gain (PWG), specific growth rate (SGR), feed efficiency (FE), and activities of alkaline phosphatase (AKP) and phenoloxidase (PO) in hemolymph among all treatments. Shrimp fed diet with 18.90 g kg-1 choline exhibited significantly lower crude lipid in hepatopancreas than those fed diets with 2.91, 3.85, 4.67 and 6.55 g kg-1 choline (P < 0.05). The concentration of reactive oxygen species (ROS) and apoptosis rate in hemocytes significantly decreased with the increase of dietary choline levels (P < 0.05). Shrimp fed diets with 6.55, 10.70 and 18.90 g kg-1 choline had significantly higher scavenging ability of hydroxyl radical (SAHR) and total antioxidant capacity (T-AOC) in hemolymph than those fed diet with 2.91 g kg-1 choline (P < 0.05). Dietary choline supplementation down-regulated the expression of genes related to apoptosis such as caspase-1, caspase-3, caspase-8, p53, and p38MAPK in hemocytes (P < 0.05), while up-regulated the expression of anti-apoptosis gene bcl2 in hemocytes (P < 0.05). Overall, the results of the present study demonstrated that appropriate dietary choline could improve growth performance and feed utilization, enhance antioxidant capacity and innate immunity, and mitigate apoptosis in Litopenaeus vannamei. Moreover, the inhibition of hemocyte apoptosis by dietary choline may be regulated by the p38MAPK-p53 signaling pathway.


Assuntos
Antioxidantes , Penaeidae , Animais , Antioxidantes/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ração Animal/análise , Colina/farmacologia , Dieta/veterinária , Imunidade Inata , Transdução de Sinais , Suplementos Nutricionais
8.
Anim Nutr ; 10: 249-260, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785252

RESUMO

Cholesterol, as an indispensable nutrient, regulates molting and growth in crustacean. As crustaceans are unable to biosynthesize cholesterol de novo, it is central to understand how dietary cholesterol affects molting in crustaceans. An 8-week feeding trial was conducted to evaluate the effects of dietary cholesterol level (0.12%, 0.43%, 0.79%, 1.00%, 1.30% and 2.50%) on growth, cholesterol metabolism and expression of genes related to lipid and ecdysone metabolism in female swimming crabs (Portunus trituberculatus). A total of 192 crabs (1.41 ± 0.05 g) were randomly distributed into 192 aquaria. Each treatment had 4 replicates with each replicate containing 8 crabs. Crabs fed the 1.00% cholesterol diet showed best growth performance, and thus based on percent weight gain, the optimal dietary cholesterol requirement was calculated at 1.01%. Tissue cholesterol concentrations were positively correlated with dietary cholesterol level. The contents of functional fatty acids in hepatopancreas significantly increased as dietary cholesterol increased from 0.12% to 2.50% (P < 0.05). The expression levels of genes related to lipogenesis pathway, lipid catabolism and fatty acid oxidation were significantly down-regulated with increased dietary cholesterol level (P < 0.05). The highest expression levels of cholesterol transport genes, low-density lipoprotein receptor (ldlr) and low-density lipoprotein receptor-related protein 2 (lrp2) occurred in crabs fed the 1.30% cholesterol diet. Moreover, hormones related to molting such as crustacean hyperglycemic hormone (CHH), methyl farnesoate (MF), molt-inhibiting hormone (MIH), and ecdysone in hemolymph were significantly influenced by dietary cholesterol level (P < 0.05). The highest expression levels of ecdysone receptor (ecr) and chitinase 1 (chi1) in eyestalk and hepatopancreas were found in crabs fed the diet containing 1.00% cholesterol (P < 0.05). In conclusion, the optimal dietary level was beneficial to functional fatty acid accumulation, regulated lipid metabolism, promoted the ecdysone signalling pathway by improving the cholesterol transport, and improved the molting rate and growth of swimming crabs.

10.
Fish Physiol Biochem ; 48(4): 955-971, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35771297

RESUMO

This study was conducted to evaluate the effects of different dietary lipid sources on growth performance, lipid metabolism, and physiological stress responses including oxidative stress (OS) and endoplasmic reticulum stress (ERS) of juvenile Acanthopagrus schlegelii (initial weight 0.88 ± 0.01 g) fed a high-fat diet (HFD). Four isonitrogenous and isolipidic experimental diets containing different lipid sources were formulated: fish oil (FO), palm oil (PO), linseed oil (LO), and soybean oil (SO), respectively. Results indicated that fish fed HFD supplemented with FO significantly improved growth than SO treatment. The high concentrations of aspartate aminotransferase and alanine transaminase were found in HFD supplemented with SO. Fish fed dietary LO supplementation showed significantly lower serum cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein contents than those in SO group. Likewise, hepatic paraffin section analysis indicated that HFD with PO or SO supplementation increased fat drop. The expression levels of peroxisome proliferators-activated receptor alpha (pparα) and silent regulator 1 (sirt1) were significantly elevated by HFD with FO or LO supplementation. Additionally, the key marker of OS malonaldehyde was significantly increased in FO and SO groups. ERS-related genes were activated in dietary PO or SO supplementation and, hence, triggering inflammation and apoptosis by promoting the expression levels of nuclear factor kappa B (nf-κb) and c-Jun N-terminal kinase (jnk). Overall, the present study reveals that lipid metabolic disorders and physiological stress caused by a HFD have significant lipid source-dependent effects, which have important guiding significance for the use of HFD in marine fish.


Assuntos
Doenças Metabólicas , Perciformes , Dourada , Animais , Dieta Hiperlipídica , Óleos de Peixe/farmacologia , Óleo de Semente do Linho/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Óleo de Palmeira/farmacologia , Perciformes/fisiologia , Óleo de Soja/farmacologia , Estresse Fisiológico
11.
Front Nutr ; 9: 855369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571938

RESUMO

Salinity is an important environmental factor that can affect the metabolism of aquatic organisms, while cholesterol can influence cellular membrane fluidity which are vital in adaption to salinity changes. Hence, a 4-week feeding trial was conducted to evaluate the effects of water salinity (normal 23 psu and low 5 psu) and three dietary cholesterol levels (CH0.16, 0.16%, CH1.0, 1.0% and CH1.6, 1.6%) on osmoregulation, cholesterol metabolism, fatty acid composition, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis, oxidative stress (OS), and endoplasmic reticulum stress (ERS) of the euryhaline fish black seabream (Acanthopagrus schlegelii). The results indicated that in low salinity, fish fed with the CH1.0 diet improved ion reabsorption and osmoregulation by increased Na+ concentration in serum as well as expression levels of osmoregulation-related gene expression levels in gills. Both dietary cholesterol level and water salinity significantly affected most cholesterol metabolic parameters in the serum and tissues, and the results showed that low salinity promoted cholesterol synthesis but inhibited cholesterol catabolism. Besides, in low salinity, hepatic expression levels of LC-PUFA biosynthesis genes were upregulated by fed dietary cholesterol supplementation with contents of LC-PUFAs, including EPA and DHA being increased. Malondialdehyde (MDA) was significantly increased in low-salinity environment, whereas MDA content was decreased in fish fed with dietary CH1.0 by activating related antioxidant enzyme activity and gene expression levels. A similar pattern was recorded for ERS, which stimulated the expression of nuclear factor kappa B (nf-κb), triggering inflammation. Nevertheless, fish reared in low salinity and fed with dietary CH1.0 had markedly alleviated ERS and downregulated gene expression levels of pro-inflammatory cytokines. Overall, these findings demonstrate that cholesterol, as an important nutrient, plays vital roles in the process of adaptation to low salinity of A. schlegelii, and provides a new insight into underlying adaptive strategies of euryhaline marine fish reared in low salinity.

12.
Food Funct ; 13(11): 6362-6372, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35612417

RESUMO

An 8-week feeding experiment was conducted to appraise the influence of dietary vitamin K3 on the growth performance, antioxidant capacities, immune responses, mitophagy and glucose metabolism in Litopenaeus vannamei. Six diets containing graded dietary vitamin K3 (0.40(control), 9.97, 20.29, 39.06, 79.81 and 156.02 mg kg-1 of vitamin K3, respectively) levels were formulated. A total of 900 shrimp with 0.90 g initial weight were randomly assigned to six diets with three replications. Our results revealed that diets supplemented with 9.97-156.02 mg kg-1 vitamin K3 didn't affect the growth performance in L. vannamei. In general, compared with the control group, 39.06 mg kg-1 vitamin K3 group significantly increased (P < 0.05) the total antioxidative capacity, and the activities of catalase, glutathione, nitric oxide synthase, alkaline phosphatase and acid phosphatase in serum and hepatopancreas. 39.06 mg kg-1 vitamin K3 group significantly decreased (P < 0.05) the malondialdehyde in serum and hepatopancreas. The mRNA levels of antioxidant and immune related genes were increased synchronously (P < 0.05). In addition, 39.06 mg kg-1 vitamin K3 group increased glycogen content and levels of mitophagy (pink1, ampkα, parkin, lc3, atg13, atg12) genes. Expression levels of glucose transport related gene (glut1), glycolysis related genes (hk, pfk), glycogen synthesis related genes (gsk-3ß, gys), insulin-like peptides (ILPs)/AKT/PI3K pathway related genes (insr, irsl, akt, pi3k, pdpk1) were increased in the hepatopancreas of 39.06 mg kg-1 vitamin K3 group. In conclusion, the present results indicated that although dietary supplementing vitamin K3 had no influence on the growth performance, 39.06 mg kg-1 vitamin K3 could activate ampkα/pink1/parkin mediated mitophagy, improve antioxidant capacity and immune response. Moreover, vitamin K3 could trigger ILPs/AKT/PI3K signaling pathways and influence glucose metabolism in L. vannamei. This finding would help to advance the field of vitamin K3 nutrition and guide the development of future crustacean feeds.


Assuntos
Antioxidantes , Penaeidae , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Dieta , Suplementos Nutricionais/análise , Glucose , Glicogênio , Glicogênio Sintase Quinase 3 beta , Imunidade Inata , Mitofagia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Ubiquitina-Proteína Ligases , Vitamina K 3
13.
Front Immunol ; 13: 817062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281070

RESUMO

Food allergies and other immune-mediated diseases have become serious health concerns amongst infants and children in developed and developing countries. The absence of available cures limits disease management to allergen avoidance and symptomatic treatments. Research has suggested that the presence of maternal food allergies may expose the offspring to genetic predisposition, making them more susceptible to allergen sensitization. The following review has focused on epidemiologic studies regarding maternal influences of proneness to develop food allergy in offspring. The search strategy was "food allergy OR maternal effects OR offspring OR prevention". A systematically search from PubMed/MEDLINE, Science Direct and Google Scholar was conducted. Specifically, it discussed the effects of maternal immunity, microbiota, breastfeeding, genotype and allergy exposure on the development of food allergy in offspring. In addition, several commonly utilized prenatal and postpartum strategies to reduce food allergy proneness were presented, including early diagnosis of high-risk infants and various dietary interventions.


Assuntos
Hipersensibilidade Alimentar , Alérgenos , Aleitamento Materno , Criança , Feminino , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/prevenção & controle , Humanos , Lactente , Período Pós-Parto , Gravidez
14.
Mar Pollut Bull ; 176: 113421, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35183027

RESUMO

So far, the adverse effects of excess Fe in shrimp have been ignored for years as it was thought that extra Fe supplementation was not needed in the practical diets. Nowadays, Fe concentration in commercial shrimp feed from feed enterprises could be around 301.34-545.5 mg/kg, which is mainly due to the fish meal containing up to 1500 mg/kg Fe. Therefore, the purpose of this experiment was to investigate the effects of Fe supplementation on the growth performance, tissue Fe deposition, hepatopancreas lipid metabolism, intestinal function in L. vannamei. The results showed that although growth performance was not influenced by the dietary Fe supplementation, excess Fe supplementation (955.00 mg/kg) significantly increased hepatopancreas Fe deposition and induced lipolysis. Moreover, excess Fe supplementation impaired intestinal immune function and disrupted microbiota homeostasis. These findings might provide partial theoretical evidence for the effect of dietary Fe supplementation on physiological metabolism in L. vannamei.


Assuntos
Hepatopâncreas , Penaeidae , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais , Hepatopâncreas/metabolismo , Ferro/metabolismo , Lipólise
15.
Aquac Nutr ; 2022: 6038613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37346375

RESUMO

An eight-week feeding trail was carried out to investigate the impacts of different dietary arachidonic acid (ARA) supplementations on growth performance, antioxidant capacity, tissue fatty acid profiles, and lipid metabolism of mud crab (Scylla paramamosain) juvenile. Six isonitrogenous (480 g kg-1 crude protein) and isolipidic (80 g kg-1 crude lipid) diets were formulated to contain 0.40, 2.50, 4.60, 8.90, 12.50, and 15.70 g ARA kg-1 (dry matter), respectively. Each experimental treatment included 24 mud crab juveniles (initial weight 11.29 ± 0.09 g) and was assigned to triplicate groups (n = 3). Crabs fed diets with 2.50, 4.60, and 8.90 g kg-1 ARA presented significantly higher percent weight gain (PWG) and specific growth rate (SGR) than those fed the other diets. Based on two-slope broken-line and quadratic curve regression analysis of PWG against dietary ARA levels, optimal dietary ARA levels were determined to be 5.20 g kg-1 and 6.20 g kg-1, respectively. Crabs fed with 4.60 g kg-1 ARA diet showed the lowest activities of alanine aminotransferase (ALT) as well as aspartate aminotransferase (AST) in hemolymph among all treatments. In hemolymph and hepatopancreas, total antioxidant capacity (T-AOC), the activities of total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px) as well as the contents of reduced glutathione (GSH) rose first and then dropped with the increase of dietary ARA levels, while the concentration of malondialdehyde (MDA) showed an opposite trend. Tissue fatty acid profiles reflected diets fatty acid compositions. The ARA contents in hepatopancreas and muscle significantly increased with the increase of dietary ARA levels. Furthermore, the areas of blasenzellen (B) cells and restzellen (R) cells were significantly downregulated with the increase of dietary ARA levels. Crabs fed with 0.40 g kg-1 ARA diet showed significantly higher gene expression levels of fatty acid synthase (fas) as well as acetyl-CoA carboxylase (acc) among all treatments. Relative gene expression levels of 6-phosphogluconate dehydrogenase (6pgd) as well as glucose-6-phosphate dehydrogenase (g6pd) have been significantly upregulated in 0.40 and 2.50 g kg-1 ARA groups. Relative gene expression level of fatty acid binding protein 1 (fabp1) significantly increased in 4.60, 8.90, 12.50, and 15.70 g kg-1 ARA groups. However, the gene expression levels of fatty acid binding protein 4 (fabp4) as well as scavenger receptor class 2 (srb2) have not been influenced by dietary ARA levels. What is more, crabs fed diets with 4.60, 8.90, 12.50, and 15.70 g kg-1 ARA had a significantly higher expression level of carnitine palmitoyltransferase 1 (cpt1) than those fed diets with 0.40 and 2.50 g kg-1 ARA. In summary, optimum dietary ARA can promote growth, enhance antioxidant capacity, and improve health of mud crab juveniles. It also demonstrated that lipogenesis has been restrained with the increasing dietary ARA levels. These findings could provide theoretical guidance and reference for the lipid nutrition research as well as the development of the commercial diet in mud crab.

16.
Aquac Nutr ; 2022: 2222029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860453

RESUMO

The present study was aimed at evaluating the regulatory effects of dietary lipid levels on growth performance, osmoregulation, fatty acid composition, lipid metabolism, and physiological response in Acanthopagrus schlegelii under low salinity (5 psu). An 8-week feeding trial was conducted in juvenile A. schlegelii with an initial weight of 2.27 ± 0.05 g, and six isonitrogenous experimental diets were formulated with graded levels of lipid: 68.7 g/kg (D1), 111.7 g/kg (D2), 143.5 g/kg (D3), 188.9 g/kg (D4), 239.3 g/kg (D5), and 269.4 g/kg (D6), respectively. Results indicated that fish fed with diet containing 188.9 g/kg lipid significantly improved growth performance. Dietary D4 improved ion reabsorption and osmoregulation by increasing the concentrations of Na+, K+, and cortisol in serum and activities of Na+/K+-ATPase as well as expression levels of osmoregulation related to gene expression levels in the gill and intestine. The expression levels of long chain polyunsaturated fatty acid biosynthesis-related genes were dramatically upregulated when dietary lipid levels increased from 68.7 g/kg to 189.9 g/kg with levels of docosahexaenoic (DHA), eicosapentaenoic (EPA), and DHA/EPA ratio being highest in the D4 group. When fish fed dietary lipid levels from 68.7 g/kg to 188.9 g/kg, lipid homeostasis could be maintained by upregulating sirt1 and pparα expression levels, whereas lipid accumulation was observed in dietary lipid levels of 239.3 g/kg and over. Fish fed with high dietary lipid levels resulted in physiological stress related to oxidative stress and endoplasmic reticulum stress. In conclusion, based on weight gain, the optimal dietary lipid requirement of juvenile A. schlegelii reared at low-salinity water is 196.0 g/kg. These findings indicate that the optimal dietary lipid level can improve growth performance, n-3 LC-PUFA accumulation, and osmoregulatory ability and maintain lipid homeostasis and normal physiological functions of juvenile A. schlegelii.

17.
Aquac Nutr ; 2022: 3007674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860462

RESUMO

An 8-week feeding trial was carried out to assess the effect of dietary krill meal on growth performance and expression of genes related to TOR pathway and antioxidation of swimming crab (Portunus trituberculatus). Four experimental diets (45% crude protein and 9% crude lipid) were formulated to obtain different replacements of fish meal (FM) with krill meal (KM); FM was replaced with KM at 0% (KM0), 10% (KM10), 20% (KM20), and 30% (KM30); fluorine concentration in diets were analyzed to be 27.16, 94.06, 153.81, and 265.30 mg kg-1, respectively. Each diet was randomly divided into 3 replicates; ten swimming crabs were stocked in each replicate (initial weight, 5.62 ± 0.19 g). The results indicated that crabs fed with the KM10 diet had the highest final weight, percent weight gain (PWG), and specific growth rate (SGR) among all treatments (P < 0.05). Crabs fed with the KM0 diet had the lowest activities of total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), glutathione (GSH), and hydroxyl radical scavenging activity and had the highest concentration of malondialdehyde (MDA) in the hemolymph and the hepatopancreas (P < 0.05). In the hepatopancreas, the highest content of 20:5n-3 (EPA) and the lowest content of 22:6n-3 (DHA) were shown in crabs fed with the KM30 diet among all treatments (P < 0.05). With the substitution level of FM with KM gradually increasing from 0% to 30%, the color of the hepatopancreas changed from pale white to red. Expression of tor, akt, s6k1, and s6 in the hepatopancreas was significantly upregulated, while 4e-bp1, eif4e1a, eif4e2, and eif4e3 were downregulated with dietary replacement of FM with KM increasing from 0% to 30% (P < 0.05). Crabs fed with the KM20 diet had notably higher expression of cat, gpx, cMnsod, and prx than those fed with the KM0 diet (P < 0.05). Results demonstrated that 10% replacement of FM with KM can promote growth performance and antioxidant capacity and notably upregulate the mRNA levels of genes related to TOR pathway and antioxidant of swimming crab.

18.
Br J Nutr ; 128(5): 793-801, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34879881

RESUMO

An 8-week feeding trial was conducted to investigate the effects of dietary vitamin D3 supplementation on the growth performance, tissue Ca and P concentrations, antioxidant capacity, immune response and lipid metabolism in Litopenaeus vannamei larvae. A total of 720 shrimp (initial weight 0·50 ± 0·01 g) were randomly distributed into six treatments, each of which had three duplicates of forty shrimp per duplicate. Six isonitrogenous and isolipidic diets were formulated to contain graded vitamin D3 (0·18, 0·23, 0·27, 0·48, 0·57 and 0·98 mg/kg of vitamin D3, measured) supplementation levels. The results revealed that L. vannamei fed diet containing 0·48 mg/kg of vitamin D3 achieved the best growth performance. Compared with the control group, supplementing 0·48 mg/kg of vitamin D3 significantly increased (P < 0·05) the activities of catalase, total antioxidative capacity, alkaline phosphatase and acid phosphatase in serum and hepatopancreas. Expression levels of antioxidant and immune-related genes were synchronously increased (P < 0·05). Carapace P and Ca concentrations were increased (P < 0·05) with the increased vitamin D3 supplementation levels. Further analysis of lipid metabolism-related genes expression showed that shrimp fed 0·48 mg of vitamin D3 per kg diet showed the highest value in the expression of lipid synthesis-related genes, while shrimp fed 0·98 mg of vitamin D3 per kg diet showed the highest value in the expression of lipolysis-related genes. In conclusion, the results of present study indicated that dietary supplementation of 0·48 mg/kg of vitamin D3 could increase Ca and P concentrations, improve antioxidant capacity and immune response, and influence lipid metabolism in L. vannamei.


Assuntos
Antioxidantes , Metabolismo dos Lipídeos , Animais , Antioxidantes/metabolismo , Larva , Imunidade Inata , Dieta , Suplementos Nutricionais/análise , Vitamina D/farmacologia , Ração Animal/análise
19.
Genes Genomics ; 44(7): 889-897, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34480734

RESUMO

BACKGROUND: TP73-AS1 is a novel antisense long noncoding RNA and plays an important role in cell proliferation and cancer development. However, the link between TP73-AS1 and colorectal cancer (CRC) has not yet been reported. OBJECTIVE: To explore the association of genetic variants in TP73-AS1 and its expression with CRC susceptibility and prognosis. METHODS: A case-control study (including 507 CRC cases and 503 controls) and bioinformatics analysis were conducted. RESULTS: rs9800 polymorphism was significantly related to higher risk in CRC [adjusted odds ratio (AOR) = 1.33, 95% confidence interval (CI) = 1.02-1.75, P = 0.034 in heterozygote codominant model]. There was no difference between TP73-AS1 polymorphisms and different tumor node metastasis (TNM) stages in the adjusted model. Moreover, TP73-AS1 expression level was positively related to different TNM stages. After adjusted for age, gender and TNM, higher TP73-AS1 expression levels were related to shorter recurrence-free survival time [hazard ratio (HR) = 1.66, 95% CI = 1.02-2.71, P = 0.043]. CONCLUSION: TP73-AS1 polymorphisms and expression may be associated with susceptibility and prognosis of CRC.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Estudos de Casos e Controles , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Prognóstico , RNA Longo não Codificante/genética
20.
Food Chem ; 372: 131289, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34818734

RESUMO

Untargeted lipidomic analysis was conducted to explore how different dietary docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratio and, specifically, how an optimal ratio (2.3) compared to a suboptimum ratio (0.6) impacted lipid molecular species and the positional distribution of fatty acids in hepatopancreas of mud crab. The results indicated that major category of lipid affected by dietary DHA/EPA ratio was glycerophospholipids (GPs). The optimum dietary DHA/EPA ratio increased the contents of DHA bound to the sn-2 and sn-3 positions of phosphatidylcholine (PC) and triacylglycerol, EPA bound to the sn-2 position of phosphatidylcholine and 18:2n-6 bound to the sn-2 position of phosphatidylethanolamine (PE). Increased dietary DHA/EPA ratio also led to competition between arachidonic acid (ARA) and 18:2n-6 bound to esterified sites. Appropriate dietary DHA/EPA ratio can not only improve the growth performance and nutritional quality of mud crab, but also provide higher quality products for human consumers.


Assuntos
Braquiúros , Ácido Eicosapentaenoico , Animais , Braquiúros/genética , Ácidos Docosa-Hexaenoicos , Hepatopâncreas , Humanos , Lipidômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...